Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli.
نویسندگان
چکیده
1. In these experiments we examined the receptive field mechanisms that support the optic flow field selective responses of neurons in the dorsomedial region of the medial superior temporal area (MSTd). Our experiments tested the predictions of two hypotheses of optic flow field selectivity. The direction mosaic hypothesis states that these receptive fields contain a set of planar direction-selective subfields that match the local directions of motion within optic flow fields. The vector field hypothesis states that these receptive fields are uniquely sensitive to distributed properties of planar, circular, or radial optic flow fields. 2. Experiments using large-field stimuli revealed that some neurons showed changes in optic flow field selectivity depending on the position of the stimulus in the receptive field; these are position-dependent responses. However, other neurons maintained the same optic flow field selectivities in spite of changes in stimulus position; these are position-invariant responses. We have used the position dependence or invariance of optic flow field selectivity as a way of testing the direction mosaic and vector field hypotheses. Position dependence is more consistent with the direction mosaic hypothesis, whereas position invariance is more consistent with the vector field hypothesis. 3. To test for position effects, we examined the optic flow field selectivity of small subfields within the large receptive fields of 160 MSTd neurons. First, we centered small-field optic flow stimuli of various sizes over the same position in the receptive field. Most MSTd neurons showed decreasing response amplitude with decreasing stimulus size but maintained optic flow field selectivity. 4. We then placed small-field stimuli at various positions within the large receptive field of these MSTd neurons. Position-invariant response selectivity was most prominent in single-component neurons, suggesting that they were more consistent with the vector field hypothesis. Position-dependent response selectivity was most prominent in triple-component neurons, suggesting that they were more consistent with the direction mosaic hypothesis. However, the variations in planar direction preference throughout the receptive field of these triple-component neurons were not consistent with a direction mosaic explanation of the large-field circular or radial selectivity observed. 5. Small-field position studies also demonstrated the existence of zones within the receptive field in which either direction-selective inhibitory or direction-selective excitatory responses predominated. The degree of overlap between these zones increased from nonselective to triple- to double- and finally to single-component neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Receptive field dynamics underlying MST neuronal optic flow selectivity.
Optic flow informs moving observers about their heading direction. Neurons in monkey medial superior temporal (MST) cortex show heading selective responses to optic flow and planar direction selective responses to patches of local motion. We recorded MST neuronal responses to a 90 x 90 degrees optic flow display and to a 3 x 3 array of local motion patches covering the same area. Our goal was t...
متن کاملSensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli.
1. Neurons in the dorsomedial region of the medial superior temporal area (MSTd) have large receptive fields that include the fovea, are directionally selective for moving visual stimuli, prefer the motion of large fields to small spots, and respond to rotating and expanding patterns of motion as well as frontal parallel planar motion. These characteristics suggested that these neurons might co...
متن کاملMST responses to pursuit across optic flow with motion parallax.
Self-movement creates the patterned visual motion of optic flow with a focus of expansion (FOE) that indicates heading direction. During pursuit eye movements, depth cues create a retinal flow field that contains multiple FOEs, potentially complicating heading perception. Paradoxically, human heading perception during pursuit is improved by depth cues. We have studied medial superior temporal (...
متن کاملMST neurons respond to optic flow and translational movement.
We recorded the responses of 189 medial superior temporal area (MST) neurons by using optic flow, real translational movement, and combined stimuli in which matching directions of optic flow and real translational movement were presented together. One-half of the neurons (48%) showed strong responses to optic flow simulating self-movement in the horizontal plane, and 24% showed strong responses...
متن کاملResponses to continuously changing optic flow in area MST.
We studied the temporal behavior and tuning properties of medial superior temporal (MST) neurons in response to constant flow-field stimulation and continuously changing flow-field stimulation (transitions), which were obtained by morphing one flow field into another. During transitions, the flow fields resembled the motion pattern seen by an observer during changing ego-motion. Our aim was to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 65 6 شماره
صفحات -
تاریخ انتشار 1991